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Adaptive Time Integration for Hyperbolic
Conservation Equations

William J. Rider, Len G. Margolin, and James R. Kamm

Los Alamos National Laboratory, Los Alamos, NM 87545, USA
wjr@lanl. gov,len@lanl. gov,kammjQlanl. gov

Summary. We introduce a fundamentally new time integration method for hy-
perbolic conservation laws based on self-adaptivity of the temporal method itself.
The adaptivity is based upon the smoothness of the solution measured locally in
time. Our approach can be contrasted with the usual global selection of a time
integration methods and error-based time step selection methodology. A challenge
to this approach is maintaining the adaptivity and the conservation form. These
methods are challenged with several standard problems as well as high-resolution
experimental data of shock-driven mixing (Richtmyer-Meshkov).

1 Introduction

There have been two major approaches to improving time accuracy in nu-
merical methods for hyperbolic conservation laws: the Lax-Wendroff [3] ap-
proach, and the method-of-lines [8]. Both of these are “linear” schemes in
the sense that the same time differencing method is applied everywhere in
the computational domain, usually for each time-step!. We distinguish these
from “nonlinear” schemes, implying that the differencing depends on the local
flow variables. In this sense, any nonlinear character in standard approaches
to time differencing arises from the spatial differencing.

Nonlinear differencing in space has become a standard methodology dur-
ing the last twenty years, and is generally considered to be essential in ef-
fectively solving a broad range of applications. In this research, we explore
the utility of nonlinear differencing in time, distinct from that used in space.
We describe a methodology that allows the time and space differencing to
adapt independently, and locally rather than globally. Finally, we examine
the performance of this approach and show a situation where this method
appears to yield greatly improved results.

We note that robust software for ordinary differential equations often
adjusts the order of the integration scheme based on the local characteristics
of the solution [1]. However, in that case the selected order of integration is
typically applied to the entire system of ODEs. Extending this approach to a

! Runge-Kutta methods are nonlinear in terms of At, that is their effective errors
are nonlinear in terms of the step size, but linear in the sense that the method
is not adapted to the nature of the local solution.
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method-of-lines for hyperbolic conservation laws leads to a differencing that is
global in space and time with temporal adaptivity, i.e., the same differencing
is applied globally in space during a time-step, but varies from one time-step
to the next. For example, the order is typically lowered when the estimates
of the ordered expansion coefficients do not form a convergent sequence. On
the other hand, if the coefficients indicate that the solution is smooth, the
order might be increased. Such an approach would forfeit the advantages
of modern shock capturing methods, where the order of integration is also
spatially dependent upon the local (spatial) character of the solution. In
particular, a shock wave is a local phenomenon whose presence should not
necessitate the degradation of accuracy in smoother areas of the flow.

Lax-Wendroff techniques implicitly invoke the assumption of space-time
similarity. It is assumed that the spatial truncation error will dominate the
higher order temporal errors, guaranteeing a dissipative approximation and
hence computational stability. While this situation may hold in many cir-
cumstances where the phenomena are (approximately) self-similar, it is not
general. In particular, near a critical point, where the characteristic speed is
nearly zero, the dissipation may vanish, thereby allowing higher-order terms
to dominate. In our time adaptive methods, we define new “limiters” that
depend on the time derivatives in a manner similar to the manner in which
spatial limiters depend on spatial derivatives. In particular, we employ a
nonlinear combination of time-differencing methods in the same manner that
“upwind” and “downwind” differences are used to achieve a desired property
such as monotonicity or positivity preservation?.

Our recent experience has shown that some difficulties may arise from
other issues besides the breakdown of space-time similarity. Numerical algo-
rithms can be viewed as dynamical systems [9]. One must be careful, there-
fore when implementing a time-differencing scheme, not to introduce spurious
fixed points, which would be problematic for a wide variety of applications,
including both steady and dynamic problems. Error control, upon which we
base our adaptive time algorithms, has been shown to be an effective manner
of combating spurious fixed points in solutions.

In the following section, we will describe a basic design of adaptive time
integration methods starting with the blending of a linear multistep method
with a forward-in-time integrator. Next, we show some results obtained with
this method in Section 3. Finally, we will extend this approach introducing a
temporal integrator that blends Runge-Kutta methods with weighted ENO
ideas. This is described in Section 4.

2 One must take care when reducing the order of the temporal differencing; when
coupled with high-order spatial differencing, the potential for oscillatory behavior
arises. Where this is an issue, we drop the spatial accuracy as necessary to
maintain stability.
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2 Initial Design

In designing our new methodology, we require that each cell edge allow an
independent temporal integrator so that the resulting methods remain in
conservation form. Thus, in one dimension we choose

wpth = = A [ (W) — ()] (1)
where f (u) i+l has an order of time accuracy that is independent of any other
edges. Here, u is the discretized dependent variable and f is the associated
flux. Subscripts indicate the cell index and superscripts indicate discretized
time level. In general, our scheme will depend on the temporal behavior in
the zones that determine the flux; e.g., in the simplest case, the limiter will
be constructed from w; and w;41 and its temporal derivatives. Although
the spatial limiters will be evaluated at time n, as in the Lax-Wendroff or
Runge-Kutta type approaches, we will now need to save previous fluxes or
time-derivatives in an Adams-Bashforth fashion.

We have constructed our method in a simple form where temporal differ-
ences are tested, through a limiter, in the same manner as spatial differences
are used for a Lax-Wendroff-style scheme. The temporal limiter is defined as

4y = minmod [(ut)" ,2 (ut)"_l] , or = minmod [2 (ug)™, (ut)n_l] , (2

where in the most straightforward implementation, (u;)" ™" = (um —unt) /At
and (u)" = = [(f (u)),]", as in the Lax-Wendroff approach to time differenc-
ing. This is a straightforward form, resulting from using the backwards and
forward time derivatives in place of spatial differences in a standard minmod
limiter. We note that the extra time differences could be used to raise the
temporal accuracy to third order

~ . 5 n 2 n— n n—
1y = minmod 3 (we)" — 3 (u)™ ", 2 ()™, 2 (ug)™ ] . (3)

There are two distinct outputs resulting from this approach: the actual
update of the solution from the previous time step, and the identification of
the presence of a critical point (i.e., a sign change in the time derivative). We
will examine two cases, using the model equation,

ou ou

i.e., inviscid Burgers’ equation with a source term. The first case is a quasi-
steady condition, where %—’; ~ 0 so that u% ~ g (z,t). This balance must

be maintained for the computations to be well-behaved [5] and achieve the

proper steady state. The second, perhaps more interesting case is where

ug—; ~ 0, implying the balance %—;‘ ~ g (z,t). This indicates the presence
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of a stagnation point. Here, the balance between the source term and time
derivative must be preserved by the numerical method. The proper evolution
of the flow through dynamic critical points is crucial to the overall accuracy
of the solution.

3 Tests of The Initial Method

Our initial example is a scalar wave equation where one expects self-similarity
to hold. We require from the outset that our methods should perform well in
this important cases. The results are shown in Figure 1. In this case the flow
is completely self-similar and the new method does not adversely effect the
results. In other words, the time-limiter does not turn on except for where
the spatial limiting has been activated. We also will examine this method’s
performance on Burgers’ equation.

PLOT PLOT

Adaptive Time Adaptive Time

7| vLimited Fromm Limited Fromm

Lot

RHO
u
2

-0.25

Fig. 1. These two figures basically demonstrate that when self-similarity should
hold that the time-limiter does not undermine the method’s performance.

For the Euler equations we will start in one dimension. Considering Sod’s
shock tube, we again see that our new method does not adversely influence
the results. This is displayed for the density and velocity fields in Figure 2.
Positive aspects of the new method are slightly reduced post shock oscillations
and better resolution of the head of the rarefaction. In general, our new
approach does not lower the resolution of solutions where self-similarity holds.

Although we expect that multidimensional examples of Fuler or Navier-
Stokes flows may exhibit more complex behavior than the examples above,
we believe it is a necessary prerequisite for our schemes to perform well in
these more idealized situations. We conclude by presenting a case where our
approach provides a significant improvement for a nontrivial problem. The
experiment [7] is a complex example of the evolution of a multidimensional
fluid instability. Our attempts to analyze this experiment has provided both
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Fig. 2. Results for Sod’s shock tube are shown for a limited Fromm’s scheme and
a spatially limited Fromm’s scheme with a time-limiter. The exact solution is given
by the solid line.

the initial impetus for our research as well as a framework to judge its util-
ity. We have found that standard high resolution methods such as MUSCL,
WENO, DG, TVD, etc., all produce solutions that are not consistent with
the statistical behavior of the experimental data (as quantified by the frac-
tal dimension, the wavelet spectra and the correlation-based measures of
the density field). Of greater concern (and interest), we have found that a
first-order Godunov method produces results more consistent with the ob-
served statistical behavior. Further analysis of the simulations has localized
the discrepancy to the behavior of the acoustic waves. We have found—and
will document—that our adaptive time approach, as discussed above, leads
to greatly improved results, in terms of their qualitative and quantitative
agreement with the experimental data.

As shown in Figures 3 and 4, the method produces results that are dramat-
ically different than the standard method. This is confirmed by the statistical
analysis of these results. The adaptive time method arguably produces the
best match to the experimental data both quantitatively and qualitatively as
determined by statistical analysis.

4 Extending the Initial Method: Weighted Adaptive
Runge-Kutta (WARK)

Buoyed by our initial success, we can extend our method using ideas borrowed
from weighted ENO (WENO) methods [4, 2]. Rather than choose weights for
a set of spatial stencils, we will choose weights for a series of temporal stencils.
The design of the method will follow the general details of a WENO method.
The key to this method is the definition of the weights used in the scheme. If
the time behavior of the flow is smooth the method will reproduce the high-
order result. We name our methods weighted adaptive Runge-Kutta methods
(WARK).
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Fig. 3. A montage of images from the gas curtain configuration showing the ex-
perimental data at 400 ps, and three simulations initialized from the experimental
measurements. From left to right are the experimental images, a standard high-
resolution Godunov method, a first-order Godunov method and a high-resolution
Godunov method with time limiting. The visual differences in the simulations are
striking.
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Fig. 4. The statistical analysis of the images shown in Figure 3. The analysis uses
fractals and wavelets to measure the properties of the images. The time-limited
method is arguably the best match with the experimental statistics. The solid line
shows the experimental data, the long dashed line is the standard high-resolution
method, the dotted line is the first-order Godunov, and the dot-dashed line is the
adaptive time integration.
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The steps of this method are identical to other Runge-Kutta methods
until the final step of the method where the values are updated to the new
time step. For example consider a second-order method (Heun’s method) for
advancing u; = ¥ (u):

1. Starting with initial data, u® = u",
2. advance using forward Euler, u! = u® + At¥ (u0),
3. also advance the solution for a half time-step (for improved Euler), u? =
u® + LA (u0).
4. before advancing to the new time value of u determine the nonlinear
weights, u" ! = u™ + At {300 [@ (u°) + ¥ (u!)] + ¥ (u?) }.
Note that we have chosen a weighted average of two separate means of ad-
vancing the solution at second-order accuracy. The key to this method is
defining the weights, w*, where w® + w' = 1. As we will see the general form
for the method is
u"t = 4 ZwkS @ (u¥)], (5)
k

where S (¥) is a stencil that advances the data with a certain accuracy and
> rwk = 1is a constraint. The key is the definition of the nonlinear weights
and the self-adaptivity coming from the smoothness indicators, IS*. In this
case both weights have the same linear value of @ = (1, 1), and we use the
time derivative associated with each as IS, thus

S —
(IS’c +€)2,

where IS* = ¥ (u’“)2 and € = x107%. Finally, the weights are normalized
using Wk = QF /Y o™,

The only remaining issue to rectify is how to define these weights on the
fluxes rather than the function evaluations. This is required because we must
maintain a conservative discretization in space. We will explore the option
where one is to average the two time derivatives in the zones adjacent to a
flux,

k —
ISJ’+% -

A variety of other methods can easily be converted into this general format
and made adaptive. For example the popular third-order TVD Runge-Kutta
integrator and the classical fourth-order Runge-Kutta methods have been
experimented with. For the third-order TVD the only major change necessary
is the final step which is modified to read,

S ()] + 5 [@ (ufa)]”

J

1
wtl =" + AtZka (uk) ,
0

with linear weights, @ = (3,2). We start with the usual sequence of opera-
tions,
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ut = u® + At (u®) ;u? = guo + %ul + At (u').

The linear stencils are two second-order methods S [¥ (u)]' = 1 [# (u0) + ¥ (u!)],
and S [@ (u)]* = @ (u?).
Using modified equation analysis, we can see the differences in the proper-
ties of the two second-order methods [6]. Applying this approach to examine
the time-differencing errors for ¥ (u) = —f (u), we find the following, for
S [ (u)]" the error is

(Atf/)Q (if// (uw)Z + %f’uzz) 7

T

where f' = 0f (u) /Ou, and f" = 0% f (u) /Ou? and for S [¥ (u)]2,

(e (" )"+ 0]
Both the dissipative and dispersive errors are opposite in sign (required to
cancel to achieve third-order), the schemes can successfully adapt to the
flow. In particular, the terms proportional to f” (u,)® are (anti)dissipative
depending upon the sign of u,. With this behavior the scheme can adapt
locally so that appropriate dissipation can be applied via the time integration
scheme.

A classical fourth-order Runge-Kutta can be made adaptive as well.
Runge-Kutta methods have been experimented with. For the third-order
TVD the only major change necessary is the final step which is modified
to read,

2
wtl =" 4+ AtZka (u¥),
0

with linear weights, @ = (3, 3, +). We start with the usual sequence of oper-
ations,

ul =u + %Atu’l (u®) ;u® =u® + %Atw (u') ;u® =u + AW (v?).

The linear stencils are two second-order methods S [# ()]’ = L [# (u®) + & (u?)],
S (w)]' =& (u'), and S[¥ (u)]” = ¥ (u?).

Now we will test these methods on a simple, self-similar case. As shown
in Figure 5 the method produce small changes over the standard methods in
this case.

We find that for a self similar flow, the solutions are not perturbed by the
adaptivity in time.
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Fig. 5. The basic performance of the WARK method for a scalar wave equation
and 5th order WENO differencing in space as compared with the “linear” time
differencing that forms the basis of the scheme used.

5 Summary

In summary, we have only begun to explore the possible formulations of time
adaptivity. We believe that our preliminary results illustrate the power and
flexibility of the approach, as well as its effectiveness. In particular, the ability
to deal with problems that do not exhibit hyperbolic self-similarity should
provide a new approach to attacking this difficult and important class of
problems.
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